

2/5/2026

Bike Anchorage Comment Re:
Safer Seward Highway Draft Environmental Assessment

1. Executive Summary

Bike Anchorage submits these comments on the Draft Environmental Assessment (EA) for the Alaska Department of Transportation and Public Facilities' (DOT&PF) "Safer Seward Highway" project, which proposes widening the Seward Highway between approximately milepost 98.5-118. Bike Anchorage is a nonprofit organization advocating for safe streets and infrastructure for bicyclists, pedestrians, and transit users. We participated in the project's stakeholder working group and have followed the project closely throughout its development.

At the outset of this process, multiple potential approaches to improving safety on the Seward Highway were available, including targeted, lower-impact interventions focused on documented crash patterns, winter conditions, speed management, and site-specific treatments. However, these options were discarded without a fair or objective evaluation, creating the impression that the outcome was predetermined in favor of the design with the worst environmental impact and financial cost: a massive four-lane divided highway.

After reviewing the draft EA, we conclude that the Safer Seward Highway is not a legitimate safety project. The document relies on misleading narratives, distorted data, and biased analytical methods to make the four-lane design look better than it actually is. The "safety" framing presented to the public does not align with the project's own data and functions primarily as a fig leaf for widening the highway without addressing real safety needs.

The Draft EA is fundamentally unsound for the following reasons:

- **The safety problem is misidentified.**

The EA claims that dangerous passing maneuvers in the summer are the primary cause of serious crashes. In reality, the project's own data show that most crashes of all severity levels occur predominantly in winter months, at low traffic volumes, and are largely single-vehicle run-off-road incidents associated with excessive speed and winter road conditions, not passing.

- **Reasonable, lower-impact safety alternatives were unfairly dismissed.**
Options that could improve safety without major widening, such as targeted geometric fixes, winter-focused treatments, speed management strategies, and smaller-footprint roadway configurations, were screened out using metrics unrelated to safety or rejected through modeling assumptions that presupposed the superiority of a four-lane divided highway.
- **The proposed solution does not address documented crash causes.**
Despite winter conditions and speed being the dominant risk factors, the project advances a widening and straightening strategy that does nothing to improve winter operations or manage operating speeds, and will in fact actively worsen crash rates and severity.
- **Driver convenience metrics are falsely presented as safety justifications.**
Level of Service and follower density (metrics that measure driver convenience, not safety) are used as decisive screening tools even while the project team publicly denies their role in decisionmaking.
- **Data and modeling are manipulated to favor maximum widening.**
Traffic growth assumptions are exaggerated, peak-hour conditions are selectively emphasized even though they are infrequent, and safety benefits are expressed as percentages rather than absolute numbers to obscure how small the underlying crash counts actually are. Alternatives with better outcomes for people walking and biking are dismissed through a screening process designed to fail them.
- **The design creates new risks for vulnerable road users.**
The proposed multi-use pathway places bicyclists and pedestrians within the highway clear zone (where out-of-control vehicles are expected to veer off the road) while fencing and constrained geometry eliminate escape space.

Beyond its technical deficiencies, the project has been marked by a troubling pattern of misrepresentation and dismissal of public input. Project representatives have made demonstrably false statements to the public and to the Anchorage Planning and Zoning Commission. When the Commission formally found that the project data did not justify the proposed design and voted to return the project for more work, the project team stated openly that they would not make any changes because they were “not legally required” to do so.

In short, the draft EA does not demonstrate a legitimate safety need for a four-lane divided highway over more efficient designs with a smaller footprint, nor does it show that the proposed design would meaningfully reduce fatalities or serious injuries. What it does show is a pattern of data manipulation, methodological bias, and dismissal of public and expert concerns in service of an unneeded highway expansion. This project must not advance as currently proposed, and extensive revisions down to the very foundation will be required to restore its credibility.

2. Project Background & Procedural Context

In spring 2025, Anchorage Metropolitan Area Transportation Solutions (AMATS) removed the Safer Seward Highway project from the Metropolitan Transportation Plan (MTP) and, therefore, the Transportation Improvement Program (TIP). The project had seen substantial cost escalation, rising from initial estimates of approximately \$600 million to \$1.4 billion, with no demonstrated plan for securing this additional funding. Within the AMATS boundary, the estimated cost increased from \$90 million to \$266 million.

These cost increases threatened the TIP's required fiscal constraint and risked diverting limited transportation funds away from other regional safety and multimodal priorities. Because DOT&PF chose to force the project forward regardless, the removal functionally redefined the project's northern terminus to MP 112, near McHugh Creek, eliminating the segment within AMATS jurisdiction.

The Anchorage Planning and Zoning Commission (PZC) reviewed the proposal as part of the required Context-Sensitive Solutions (CSS) process at a hearing on September 8, 2025. At this meeting, three community members testified against the project as currently designed. The staff report made it clear that the project team had not demonstrated that the proposed widening met the stated purpose and need, or that a less disruptive and less costly alternative could not meet the same objectives, and determined the project data did not justify the conclusions made.

The project team made multiple false statements to the PZC during this hearing. The first was made in response to public feedback that this project's funding would be better spent on other, more urgent road safety projects in Anchorage:

"There's a lot of discussion about the ability to remove money from this project and put it to projects in Anchorage... if they don't fall in the right bucket, you can't necessarily take \$1.5 billion and put it toward projects in Anchorage. We put forth 10%, we get that return on a capital investment, but that doesn't mean that's the same for Anchorage."

This statement misrepresents the rules that govern the type of federal funding applied to the “Safer Seward Highway” project. In fact, the National Highway System funding identified as the funding source for this project could be applied to any state-owned major arterial road in Anchorage, such as Tudor, Muldoon, DeBarr, and Northern Lights, because they are all designated as National Highway System facilities. The state’s choice to allocate \$1.5 billion in federal funding toward widening a highway south of Anchorage rather than investing in the roads it owns and manages within the city reflects state-level priorities and policy decisions, not restrictions imposed by federal funding rules.

Another example came when the project team attempted to address the fact that their justification for extreme highway widening was based on Level of Service, which is a metric of driver convenience that has no relationship to safety whatsoever. A project team member said:

“There’s a lot of talk about level of service and that’s a tough one to get to. That was never a component of our purpose and need so it wasn’t any of the main pieces we looked at or the problem we were trying to solve.”

Three minutes later, when answering a question about why the project team did not move forward with a three-lane design option, the same team member said the following:

“The other stuff in there is some level of service analysis to try to see if it functions right. What you notice in there, and it was referenced as follower density, is that the amount of vehicles that are out there, especially in the summertime, you don’t really get rid of the queue. You kind of have a queue of vehicles. You open up for a passing lane, people try to make their pass, and then they end that passing lane and there’s still a queue of vehicles.

If that’s not the case and that follower density is below a certain level, that’s when that level of service is a higher value. So what that’s showing is how well the facility is functioning based on the different turnoffs that are there, based on the speeds, based on the number of vehicles, all those different things that factor into there.

Because you see that lower level of service, it doesn’t function very well within this corridor to just have alternate passing lanes. That’s why you’ll see those lower scores.”

In the span of a few minutes, this representative of the project contradicted himself and demonstrated that Level of Service is, indeed, a core part of the decisionmaking process that led to selection of the four-lane design.

Those with slightly longer memories will recall that as recently as 2023, the project team's [public presentations](#) listed "reduce congestion" as one of three top-line needs within the Purpose and Need, based on the absurd fiction that the highway suffered from "degraded level of service" and was in imminent danger of running out of capacity.

In any case, the CSS document being reviewed at this hearing was much shorter than the Draft EA under current consideration, and did not show the full extent of the technical analysis; now that the Draft EA has been released, it is clear that Level of Service is a significant factor being used to justify the highway widening, as documented by the 12 pages of direct capacity analysis in Appendix G, section 3.

Ultimately, the Planning & Zoning Commission voted to return the application to the project team because more work needed to be done. The feedback from the Commission was clear:

- "Overwhelmingly, what I heard tonight doesn't meet muster... Do better."
- "The concept of a three-lane road... I don't see enough to give me comfort that that was fully evaluated and adequately rejected given the significant impact and cost associated with the divided four-lane concept."
- "Every single person who visits the state drives that highway because of the viewshed. And any change that makes that highway look like a ring road around any city in the country is going to be a significant detriment not just to the local community council, but to the state of Alaska and the economic benefit that that highway and that road brings to us."

Rather than addressing the concerns raised by AMATS, PZC, and the public, the project team proceeded with an unchanged design trajectory. In a stakeholder meeting following the PZC hearing, project representatives stated openly that they would not modify the project in response to Commission findings because they were "not legally required" to do so, exhibiting an attitude that treats public engagement as a perfunctory hoop-jumping exercise rather than a source of information that should meaningfully influence design. To date, the project team members have not publicly acknowledged or apologized for their false statements to the PZC or other members of the public.

Finally, it is important to note that public and stakeholder concern around the project is not limited to bicycle and pedestrian groups. Climbing organizations, biologists, residents, conservation groups, and recreational users have raised extensive concerns about habitat impacts, access issues, view shed disruption, and long-term effects on parkland. Those issues are beyond the scope of this comment letter, but they demonstrate that opposition to an ultra-wide highway expansion is both broad and deep.

3. Mischaracterized Existing Conditions

The draft EA assumes widespread agreement that current roadway conditions are unsafe, congested, and in need of a large-scale geometric solution. However, the existing conditions data presented in the document paints a materially different picture: one in which crash rates are relatively low, crash patterns are seasonal and weather-driven, and traffic performance remains perfectly functional even under the “worst” projected future conditions.

Crash Frequency and Severity

At no point during the stakeholder working group nor in any public meeting has the project team ever laid out a comprehensive view of relevant crash data and explained how their preferred alternative would address these crashes, presumably because it would immediately become obvious that a four-lane divided highway is not a proportional or effective remedy for the true safety issues along the corridor.

Indeed, at no point in the draft EA does the project team list out in simple numbers each type of crash as has been done in this section; those details are scattered across the EA and three appendices, described in reference to each other rather than in absolute numbers, and must be deduced like a logic puzzle. This level of obfuscation, it should go without saying, is entirely unacceptable from a team of professional engineers.

We undertook the effort to lay out the true crash data in plain terms, something a stakeholder should not have to do on a responsibly managed project. Appendices A, C, and G collectively document 236 crashes over a five-year study period (2017-2021), with the following severity breakdown:

- 160 property damage only
- 64 minor injury
- 8 serious injury
- 4 fatal

While any fatal or serious crash warrants attention, the absolute scale of the safety problem is minuscule relative to the scope, cost, and impacts of the proposed project. As Bike Anchorage observed in [our letter to the PZC](#):

"By contrast, urban arterial roads in Anchorage, most of them owned and managed by the state, have significantly higher crash volumes and fatality rates over a similar timeframe. For example:

DeBarr Road, 2017-2021:

- 651 crashes
- 276 resulted in injury or worse
- 17 resulted in severe injury or death

Muldoon Road, 2017-2021:

- 447 crashes
- 188 resulted in injury or worse
- 14 resulted in severe injury or death

Northern Lights Boulevard, 2017-2021:

- 602 crashes
- 243 resulted in injury or worse
- 17 resulted in severe injury or death

Despite these figures, none of these Anchorage corridors are slated to become Safety Corridors or have \$1.5 billion invested in safety upgrades."

Crash Types and Causation

The core premise is that the Seward Highway is unsafe because of frustrated drivers attempting to pass slow-moving vehicles during peak summer traffic congestion, and that head-on collisions resulting from these maneuvers are the primary safety problem. The project narrative asserts that expanding to a four-lane divided highway will address this issue by eliminating pass-following conditions and improving summer Level of Service.

This concept is entirely contradicted by the project's own crash data. Not a single fatal crash in the study period occurred in the conditions described above. In reality:

- Head-on crashes comprised approximately 11% of total crashes, about 26 total.
- Of the four fatal crashes, three occurred in winter months.
- The remaining fatal crash occurred in June at midnight, well outside the daytime summer congestion window.

Furthermore, a substantial portion of crashes, roughly 45%, were single-vehicle run-off-road incidents, which are strongly associated with winter road conditions and vehicle speed rather than passing behavior.

The report itself acknowledges that October through March see higher crash frequency despite significantly lower traffic volumes. (Appendix G, pg. i) This pattern is inconsistent with a passing-pressure hypothesis and instead suggests that winter road conditions and speed management are more relevant safety factors than summer “congestion.”

Yet this observation does not inform the proposed solution. Nowhere does the EA evaluate winter operational or speed-management treatments, nor does it consider whether the proposed widening may amplify speed-related crash severity by reducing horizontal curvature and increasing comfortable driving speeds.

Traffic Volumes and Design Context

The EA cites heavy seasonal traffic as a justification for widening, but the documented volumes do not support the characterization of a severely constrained facility. AADT values are relatively low and growing minimally, if at all, throughout the corridor.

It is also notable that the EA’s performance metrics, using a heavily biased traffic count weighted toward the infrequent seasonal peak volumes, designate the highway as currently operating at an “undesirable” Level of Service even though documented average travel speeds are still at or above the posted speed limit.

Table 3-8. 2024 existing condition segment capacity results.

Seward Highway Location	Segment	MP Range	Performance Measures				Service Measures		
			ATS (mph)		PF (%)		FD (followers/mile/lane)	LOS	
			NB	SB	NB	SB			
South of Community of Bird Creek – Boretide Road	1	98.7–103.1	54.4	57.5	68.6	72.1	9.1	11.8	D
Boretide Road – Indian Road	2	103.1–103.8	57.2	56.5	67.7	70.8	8.6	11.6	D
Indian Road – Rainbow Valley Road	3	103.8–108.4	57.7	57.9	66.7	69.6	8.9	10.7	D
Rainbow Valley Road – Potter Valley Road	4	108.4–115.4	57.7	57.5	68.5	72.1	9.7	11.8	D
Potter Valley Road – Potter Marsh	5	115.4–117.6	56.5	56.6	71.0	75.5	11.4	14.5	D/E ^a

Notes: NB = northbound; SB = southbound; red-shaded cells denote service measures that do not meet the recommended LOS.

^a Northbound/Southbound

To state this more plainly: We are told on the one hand that this road is failing and choked with congestion, but on the other hand, it is a measured and proven fact that vehicles are still traveling freely at or above the posted speed limit. Both of these cannot be true at the same time.

Intersections and Access Points

In Appendix G, tables 2-3 and 2-4 show unremarkable crash patterns at intersections within the project boundaries. The only intersection of concern, Potter Valley Road, lies outside the current project limits following its removal from the MTP. The EA does not offer evidence that access-related conflict points are relevant to the safety problem, but nevertheless plans to impose significant access limitations throughout the corridor to facilitate faster vehicle speeds.

In sum, the documented existing conditions do not indicate a systemic safety failure that aligns with the chosen remedy. The crash patterns, seasonal dynamics, and operational performance suggest a fundamentally different suite of interventions than those proposed, raising suspicions that the ultra-wide highway design choice was not based on a good-faith interpretation of the data.

4. Modeling, Data, and Methodological Manipulation

A central concern with the EA, beyond the conclusions it reaches, is the set of methodological choices used to reach them. The document uses driver convenience metrics as proxies for safety, selectively applies growth assumptions, and screens alternatives through models that presuppose the superiority of a divided four-lane highway.

Level of Service (LOS) as Covert Decision Driver

As Bike Anchorage identified in our letter to the PZC: “LOS grades (A through F) are not safety ratings; they are purely a measure of driver convenience. There is no requirement for this or any road project to achieve any LOS grade... To say that LOS calculations are biased toward drivers is an understatement; they do not take into account the experience of any other road user whatsoever, fully excluding pedestrians, bicyclists, and transit users from consideration.”

Later in that letter, we added: “In the context of this section of the Seward Highway... LOS is instead measured by “follower density,” essentially, how many drivers are driving behind another vehicle. This is how we come to the conclusion that this section of the Seward Highway is rated

at LOS D. This does not mean that it's broken, failing, or nonfunctional. It only means that at certain peak times, many drivers on that road will drive behind other vehicles.

If this seems like a strangely obvious statement or even somehow tautological, that's because it is normal and to be expected that many cars will be driving behind other cars when there is only one lane of vehicle travel per direction. This does not constitute an emergency or safety hazard. Indeed, the LOS chart on page 36 of the CSS report shows that ratings A-E are all within normal limits for roadways, and if "demand exceeds capacity" then the road would be rated F.

Framing LOS D as a safety crisis is misleading. The CSS report effectively argues that drivers should never have to follow another car on a rural highway, a standard that no transportation agency could reasonably meet. Is that level of driver convenience worth spending \$1.5 billion of taxpayer money?"

Now that the Draft EA has been released and the full Level of Service analysis can be scrutinized, the justification breaks down even further. The analysis is based on the traffic volume from one hour of the day during peak summer traffic, so that only the most extreme busy times will be considered when calculating LOS, even though that means that the calculation represents only a tiny fraction of the overall traffic over time.

Ironically, for all the concern over the threat of driver violence if they must be subjected to an "undesirable" LOS D/E, the data projections actually show that material conditions will remain perfectly fine without intervention. Even under the projected future "no-build" scenario, average travel speeds remain at or above the posted 55 mph speed limit and travel times are unchanged from present levels. This is hardly a portrait of a "failing" transportation system and absolutely not one that justifies a \$1.5 billion widening.

Table 3-9. 2024 facility performance metrics.

Direction of Travel	Travel Time (minutes)	Percent Chance to Pass (%)
Existing Northbound	20	36
Existing Southbound	21	30

Table 3-13. 2052 No-Build facility performance metrics.

Direction of Travel	Travel Time (minutes)	Percent Chance to Pass (%)
Northbound	20	36
Southbound	21	30

Table 3-12. 2052 No-Build segment capacity results.

Seward Highway Location	Segment	MP Range	Performance Measures				Service Measures		LOS
			ATS (mph)		PF (%)		FD (followers/mile/lane)		
			NB	SB	NB	SB	NB	SB	
South of Community of Bird Creek – Boretide Road	1	98.7–103.1	54.0	52.7	75.8	84.7	13.6	19.3	E
Boretide Road – Indian Road	2	103.1–103.8	57.1	57.4	75.0	77.1	13.3	15.8	E
Indian Road – Rainbow Valley Road	3	103.8–108.4	57.7	56.1	74.1	78.2	13.3	17.0	E
Rainbow Valley Road – Potter Valley Road	4	108.4–115.4	57.5	57.0	76.0	79.4	14.3	17.4	E
Potter Valley Road – Potter Marsh	5	115.4–117.6	55.2	55.8	78.6	82.5	17.3	21.2	E

Notes: NB = northbound; SB = southbound; red-shaded cells denote service measures that do not meet the recommended LOS.

False Traffic Growth Assumptions

The EA assumes a 1% compound annual growth rate (CAGR) in traffic volumes through 2052. This assumption yields projected AADT values that nearly double current volumes, producing conditions that exceed those observed today on major Anchorage arterials.

The EA provides no empirical justification for this growth rate. Traffic volumes on the Seward Highway have stagnated or declined for decades, and the observed trends throughout Anchorage do not support sustained growth at this magnitude. As we observed in our letter to the PZC:

“The technical memorandum projects Average Annual Daily Traffic (AADT) near milepost (MP) 103.1–103.8 to nearly double by 2052, rising to 14,740 vehicles. Actual count data does not support this assumption, and in fact shows that AADT at MP 103.25 declined from 8,080 in 2003 to 7,710 in 2024. Similar discrepancies occur elsewhere; at MP 117.5, AADT grew at only 0.43% annually from 2003–2024, significantly below the 1% annual growth rate used in the project’s design assumptions.”

This false growth rate is then used as the basis for the Level of Service, performance and crash predictions later in the document. This means that the predictions used to select the four-lane divided highway alternative are based on an unprecedented and unjustified assumption that traffic volumes will nearly double in the coming decades. With foundational assumptions so clearly erroneous, no valid conclusion can be drawn.

Speculative and Unvalidated Crash Prediction Modeling

Appendix G acknowledges that no accepted method exists to evaluate the safety performance of a two-lane-to-four-lane divided conversion in this specific facility type. In the absence of validated methodologies, the project team invented one of their own, leading to predicted improvements in crash rates that are not grounded in empirical studies. And it bears repeating that these percentage improvements are presented instead of their numerical values, which obscures the fact that the underlying crash numbers are so small as to make the differences insignificant.

Misapplication of Level of Traffic Stress Methodology

Appendix G, section 1.4 claims that the proposed multi-use pathway, located approximately 10 feet from the widened, straightened Seward Highway, would result in a Level of Traffic Stress (LTS) rating of 1 (“green,” lowest stress) for bicyclists along this corridor. This claim is not supported by the LTS methodology cited in the draft EA and indicates a selective and incomplete application of that methodology.

The [cited document](#) explicitly states that bicycle LTS is determined using a “worst-case principle,” in which the highest stress score among roadway segments, intersection approaches, and intersection crossings governs the overall LTS rating for a corridor or segment. The methodology is clear that “the worst score among the three analysis categories determine the overall LTS score of the overall segment.”

While the methodology notes that physically separated paths are *generally* assigned LTS 1 due to separation from vehicular traffic, this designation is explicitly conditional and not absolute. Separation alone does not override other sources of stress, including high vehicle speed, turning conflicts, unsignalized crossings, and exposure to errant vehicles, all of which are prevalent along the Seward Highway corridor.

The proposed pathway is located approximately 10 feet from the travel lanes of a 55 mph highway and lies entirely within the highway clear zone. By definition, the clear zone is the area intended to accommodate out-of-control vehicles that leave the roadway at high speeds. Locating a bicycle and pedestrian facility within this zone directly exposes users to the most severe crash scenarios associated with high-speed roadway departures.

In several segments, the proposed pathway would place bicyclists between the widened highway and a railroad corridor or fence, creating a constrained environment with limited escape options. This condition significantly increases user stress by:

- eliminating lateral buffer or refuge space,
- amplifying noise and wind effects from high-speed traffic,
- increasing perceived risk from large vehicles and trucks,
- and removing the ability for users to adjust position in response to perceived danger.

A facility that places users between a high-speed highway and a fixed barrier cannot reasonably be characterized as low-stress for the “interested but concerned” population that LTS 1 is intended to represent.

The project documentation does not demonstrate how these features were evaluated or how they could plausibly yield LTS 1 scores. Indeed, the section appears to be a mere afterthought, containing just three sentences and a single table.

Internal Inconsistencies & Unclear Data

In our review of the draft EA, we have noted many examples of internal inconsistencies and contradictions between different parts of the same report. As our analysis here focuses exclusively on the road, safety and bike/pedestrian areas, it seems likely that there are other similar errors in Appendices H through V that we didn’t catch. A few of the errors we have identified include:

The main EA document states that construction on this project will begin in fall 2026; Appendix D identifies construction starting in spring 2026. Neither location provides further information on what construction could possibly begin on this project in a matter of months, considering that the draft EA is not yet approved and (we assume) project design has not yet begun in earnest.

The project cost is also inconsistently reported; in the main EA document it is estimated at \$1.4 billion, but in Appendix D, it is \$1.3 billion, and the project team told the PZC in 2025 that the cost would be \$1.5 billion. A swing of \$100 million up or down may seem like a triviality, but it’s worth remembering that \$100 million is the entire amount of money spent by the state so far on the Seward Highway Safety Corridor from 2006 to 2022. Additionally, newer estimates are already placing the true project cost over \$2 billion, but this number appears nowhere in the EA.

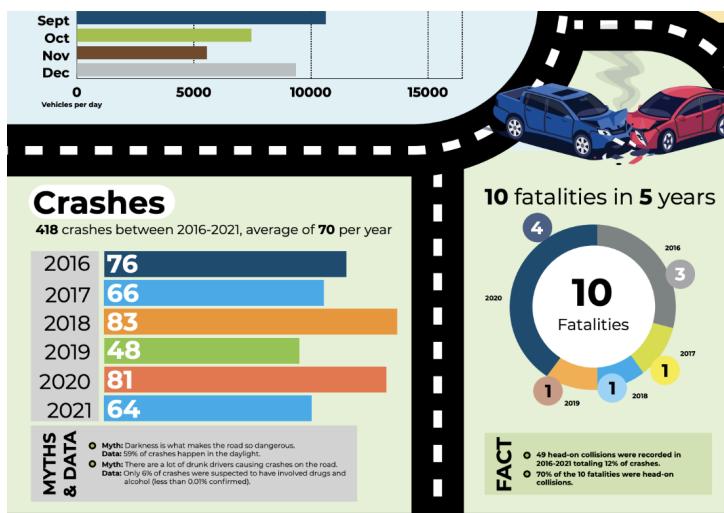
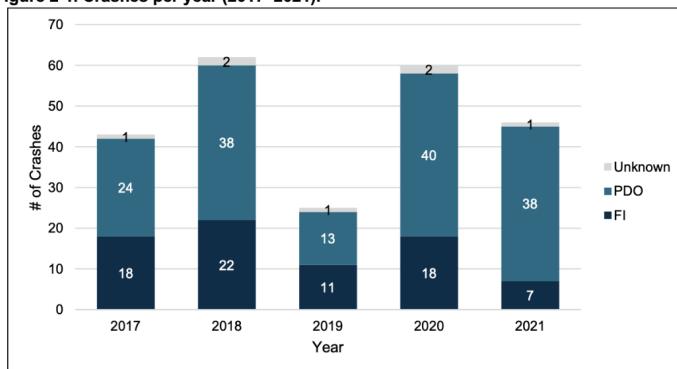

There is a serious issue with the crash data in Appendix G. The document states: "Four crashes within the Project corridor resulted in fatalities during the 5-year study period: two in 2018, one in 2019, and one in 2021 (Figure 2-2). Three of the fatalities were from head-on crashes that occurred between MPs 102 and 104." Figure 2-2 plots these on a map and immediately contradicts the narrative, with four crashes listed with the dates 2018, 2019, 2020 and 2020.

Figure 2-2. Fatal crash locations (2017–2021).

For the purposes of our analysis in this document, we have assumed that the only error in this graphic is in the year listed for each crash, and that the other characteristics attributed to each crash are accurate. However, as you can imagine, the quality of the data provided by the project team constrains our analysis here as much as it determines the validity of the EA itself.

Data consistency problems persist across the project's development timeline as well, casting doubt on the validity of the numbers presented. [This slide deck](#), from a 2023 public presentation, reports that there were 418 crashes over a six-year period from 2016-2021:

The CSS design report in 2025 also reported crash data from 2016-2021, but perplexingly, does not report the same numbers as the slide deck. These numbers are the same as in the draft EA, where they are identified as being from 2017-2021:


2 Divided Versus Undivided

The major benefit of dividing a highway is the reduction or removal of head-on collisions between vehicles. When median separated, the increased width between lanes provides a greater clear-zone for a run-off-the-road vehicle to recover. It also provides an increased snow storage area. Based on the crash data from 2016 to 2021 within the Project area, of the 236 total crashes, 11.0 percent were head-on collisions. Of the 76 fatality and injury (FI) crashes, 12 resulted in severe injury or fatality, and of these 12 crashes, 50 percent were head-on collisions. Four fatalities occurred during that period, two in 2018, one in 2019, and one in 2021. Three of the four fatalities (75 percent) resulted from head-on crashes that occurred between MPs 102 and 104. Head-on collisions represent a substantial portion of FI crashes, making the division of northbound and southbound lanes with a median a critical safety

Finally, the draft EA makes clear that the data set is from 2017-2021, and presents a yearly breakdown of crashes that do not match up with those reported in the 2023 public presentation:

Safer Seward Highway Project | Seward Highway MP 98.5 to 118,
Bird Flats to Rabbit Creek
Traffic and Safety Analysis Report

Figure 2-1. Crashes per year (2017–2021).

Source: DOT&PF Central Region
Notes: PDO = property damage only

Four crashes within the Project corridor resulted in fatalities during the 5-year study period: two in 2018, one in 2019, and one in 2021 (Figure 2-2). Three of the fatalities were from head-on crashes that occurred between MPs 102 and 104. Based on crash records, drugs and alcohol do not appear to be contributing factors in any of the fatalities.

The 2023 slide deck claims an "average" of 70 crashes per year, but not a single year actually reported in the draft EA reaches that threshold. Which numbers are true and correct, and why were the others allowed to be released to the public?

These failures to accurately represent and manage basic facts have serious implications for public engagement. The Draft EA was released on December 29, 2025, during the week between Christmas and New Year's holidays when the community traditionally takes time off to rest and enjoy time with friends and family. The comment period was originally set to be 30 days, and was lengthened to 45 after the stakeholder group requested an extension. At the public hearing on January 14, 2026 in Anchorage, printed copies of the full draft EA stood nearly one foot tall in binders.

If the project team is unable to produce an internally consistent document over the course of years of development by professionals with technical expertise, how can the public possibly be expected to parse over 2,000 pages and develop a meaningful response within a 45-day comment window that falls over major holidays?

5. Alternatives Analysis Designed to Fail

The Alternatives Analysis section of the EA eliminates lower-impact and lower-cost options using a screening process that presupposes the superiority of a four-lane divided highway. The mechanics of this screening are not neutral; they selectively apply performance metrics, traffic modeling assumptions, and safety proxies that disadvantage smaller configurations while favoring the chosen alternative.

Undivided Alternatives Removed at the Outset

Appendix D states:

“All undivided concepts are considered not reasonable and were removed from further analysis.”

This elimination rests on the false head-on collision narrative described earlier and on crash modeling applied to only 26 head-on crashes over five years, of which three were fatal. The decision to discard undivided alternatives without any analysis, based on such a small sample size, creates the appearance of a conclusion reached first and justified second.

Three-Lane Alternatives Rejected Through LOS

While the project team has falsely claimed that Level of Service was not used as a screening criterion, three-lane alternatives are ultimately rejected in the draft EA for failing LOS and

follower density metrics, which we must repeat, are metrics of driver convenience and have no relationship to safety whatsoever.

This filtering mechanism ignores two key facts documented in Appendix G:

1. Even under supposedly “failing” LOS D/E modeled conditions, travel times remain unchanged and average speeds remain at or above the posted limit.
2. VRU scores for the three-lane configurations are better than those of the selected four-lane option.

If performance remains functional, VRU exposure improves, and safety modeling does not produce validated benefits for widening, there is no excuse for eliminating these alternatives under the “reasonableness” standard.

6. Proposed Design Will Worsen Safety

The draft EA claims the project will improve safety for all users, including bicyclists and pedestrians. However, the proposed multimodal facilities are designed as residual elements to fit into the margins of the project after vehicle lanes are established, rather than as primary safety treatments. The resulting geometry places vulnerable road users in locations that the EA itself defines as crash recovery zones for out-of-control vehicles.

Multi-Use Pathway in the Clear Zone

Appendix C explains that the Seward Highway contains 30-foot clear zones, intended to provide recovery space when drivers lose control of their vehicles. The proposed multi-use pathway would be placed 10 feet from the travel lane in many areas, placing bicyclists and pedestrians well within the clear zone.

The EA acknowledges that nearly half of crashes are run-off-road, single-vehicle incidents. Yet the design places VRUs directly within the same spatial envelope used to mitigate such crashes.

The EA offers no barrier protection and instead proposes fencing on the railroad side, creating a narrowed corridor with escape routes blocked. Unlike urban shared-use paths, which typically provide generous buffers, landscaping, or alternative escape space, this facility would confine users between two high-speed transportation corridors. Noise, wind blast from trucks, vibration,

and visual proximity to traffic are defining characteristics of the experience. These conditions materially increase both perceived and actual risk, particularly for children, families, and less confident riders.

The project team has claimed that greater separation, alternative alignments, or more protective designs for bicycling and walking cannot be justified due to environmental constraints and right-of-way limitations. At the same time, the project advances extensive roadway widening to add general-purpose vehicle lanes that are not needed for actual traffic volumes, with significant environmental impacts somehow deemed acceptable and necessary for this purpose.

This pattern contains the seeds of its own failure. A substandard, hostile multi-use pathway will not be comfortable for bicyclists or pedestrians, who will then be disincentivized to use the facility, which will then create the perception that “the public doesn’t need or want” these facilities as a circular justification for removal or omission from future projects.

Unrealistic Speed Assumptions and Internal Contradictions

The EA acknowledges that roadway geometry strongly influences driver behavior, particularly operating speed, yet the selected alternative relies on assumptions about future speeds that are fundamentally incompatible with the design being proposed.

The EA explicitly recognizes that drivers intuitively adjust their speed based on roadway geometry and that road curvature plays a central role in moderating operating speeds. Appendix C, 2.3.2.2 states: “The highway also contains stretches where the geometric design can support speeds up to 80 mph. Drivers often intuitively match their speed to the road design and road conditions.”

Appendix C further notes that sharper curves reduce operating speeds, while gentler curves support higher speeds, and that large speed differentials between successive curves can contribute to loss-of-control crashes. Best practices, according to the EA, are to limit speed differentials to less than 10 mph between curves in order to improve safety.

Appendix G reinforces this understanding, stating that “research (and engineering judgment) indicate that horizontal curvature affects safety performance on rural, multi-lane highways... Sharper curves typically require slower speeds to navigate safely, while gentler curves allow for higher speeds.”

Despite this clear understanding, the selected alternative proposes to straighten curves and add more wide lanes, interventions that every professional engineer knows will result in increased

operating speeds. The EA acknowledges that some existing curves currently work to slow down drivers, yet the project softens precisely those features.

Critically, the EA never considers that the increased speeds induced by this widened, straightened geometry might offset or exceed any speculative safety benefits attributed to reduced passing or increased capacity. Nor does the project propose any design measures to bring down operating speeds in segments where the geometry already supports speeds up to 80 mph.

This raises a fundamental question:

If the project team recognizes that certain segments already “feel” like 80 mph roadways, in what universe does widening lanes and straightening curves (particularly in the only locations where drivers currently feel compelled to slow down) result in a corridor where drivers reliably obey the 55 mph speed limit?

Appendix G Tables 3-19 and 3-20 assume that in the four-lane divided design, traffic will flow at a polite 56 mph in all directions, even under conditions where traffic density is as low as 10 vehicles per mile per lane. Under these conditions, each driver has more than 500 feet of open roadway ahead and the ability to pass slower vehicles at will.

Table 3-19. 2052 Concept C7 segment capacity results.

Seward Highway Location	Segment	MP Range	FFS (mph)		Segment Density (passenger car/mile/lane)		LOS
			NB	SB	NB	SB	
South of Community of Bird Creek – Boretide Road	1	98.7–103.1	56.0	56.1	10.6	13.3	A/B ^a
Boretide Road – Indian Road	2	103.1–103.8	56.0	56.1	10.6	13.3	A/B ^a
Indian Road – Rainbow Valley Road	3	103.8–108.4	56.7	56.9	9.9	13.0	A/B ^a
Rainbow Valley Road – Potter Valley Road	4	108.4–115.4	56.7	56.7	10.3	11.9	A/B ^a
Potter Valley Road – Potter Marsh	5	115.4–117.6	56.6	56.4	12.3	14.6	B

Notes: NB = northbound; SB = southbound; service measures that meet or exceed the LOS are shown in green-shaded cells.

^a Northbound / Southbound

The assumption that drivers will voluntarily constrain their speed to 56 mph on a widened, straightened, multi-lane highway under free-flow conditions is ludicrous on its face and defies all engineering judgment. It is not supported by driver behavior research, common sense, or the project’s own discussion of geometric design.

Perhaps most strikingly, Table 3-20 shows that the proposed widening results in no meaningful reduction in travel time through the corridor. After spending approximately \$1.4 billion (or more) to expand and straighten the highway over 20 years, some people may get through the corridor about sixty seconds more quickly. If we are to believe this projection, can this payoff seriously be considered worthwhile?

Table 3-9. 2024 facility performance metrics.

Direction of Travel	Travel Time (minutes)	Percent Chance to Pass (%)
Existing Northbound	20	36
Existing Southbound	21	30

Table 3-22. 2052 Concept C7-T facility performance metrics.

Direction of Travel	Travel Time (minutes)	Percent Chance to Pass (%)
Northbound	20	99
Southbound	20	99

The EA's speed assumptions are internally inconsistent with its own analysis of roadway geometry and driver behavior. The analytical contradiction at the core of this argument calls the entire project's safety conclusions into question.

7. Broader Context: DOT&PF's Safety Priorities and Resource Allocation

The Seward Highway project must be evaluated in the context of statewide transportation safety performance and resource allocation. [DOT&PF has recently de-funded](#) \$19 million in Proven Safety Countermeasure projects in Anchorage through changes to the Highway Safety Improvement Program (HSIP), citing limited funding. These cancelled projects, including upgrades on some of the most truly dangerous roads in the state, offered well-established safety benefits at a fraction of the cost of the proposed Seward Highway expansion.

At the same time, DOT&PF leadership has implemented an internal directive to stop lane reallocations, despite FHWA guidance indicating that these are among the most effective safety treatments for urban corridors. The result is a statewide pattern in which low-cost, high-benefit safety projects are delayed or defunded while high-cost, marginal-benefit roadway expansion projects advance.

The Seward Highway proposal clearly exhibits this pattern. The draft EA estimates project costs at \$1.3-\$1.4 billion, a figure that has already escalated and will almost certainly continue to grow. This represents a resource allocation equivalent to roughly \$200-\$300 million per fatal crash prevented, assuming best-case scenarios from speculative modeling. Meanwhile, safety improvements on roads with much higher crash and fatality rates have been delayed for “lack of funding.”

If the objective is to reduce fatalities and serious injuries on Alaska roads, no serious argument can be made that this is the highest and best use of limited transportation resources.

8. Conclusion

The Seward Highway is an important transportation corridor, and there is broad public support for making it safer. However, the draft EA does not establish that the proposed four-lane divided highway is necessary, proportional, or effective as a safety intervention. The safety narrative does not align with crash data; the modeling does not validate the claimed benefits; and the alternatives analysis appears structured to reach a predetermined conclusion.

We hesitate to offer suggested revisions, as the flaws and inaccuracies of this document are so deeply bound up in its foundational assumptions and data, but at the very least, these actions are necessary to begin to set things right:

1. Correct the Purpose & Need statement to reflect documented crash causation and eliminate LOS-based mobility objectives from safety justification.
2. Reevaluate all alternatives using real safety metrics rather than Level of Service.
3. Reassess growth assumptions using accurate traffic data and trends.
4. Analyze targeted, winter-focused, and speed-management safety treatments consistent with observed crash patterns.
5. Evaluate VRU safety objectively and comprehensively, including clear zone exposure and barrier protection needs.
6. Provide absolute crash numbers, not percentages, in safety justifications.
7. Address the proportionality of scope, given the location of documented fatal crashes.

Additionally, the project team must take steps to address the grave breach of public trust that they have committed, beginning with a full and public apology for making false statements to the public and local leaders and a commitment to do better.

Thank you for the opportunity to comment.

Sincerely,

A handwritten signature in black ink, appearing to read "Alexa Dobson".

Alexa Dobson
Executive Director, Bike Anchorage